Sinusoïdes

JR Seigne MP*, Clemenceau Nantes

Représentation réelle

Vecteur de Fresnel

Représentation complexe

Multiplication

Moyennes

Moyenne d'une fonction périodique Moyenne du carré d'une fonction sinusoïdale

Moyenne d'un produit

Sinusoïdes

JR Seigne MP*, Clemenceau
Nantes

September 1, 2024

- Représentation réelle
- Vecteur de Fresnel
 - 3 Représentation complexe
 - 4 Multiplication
 - 6 Moyennes

Moyenne d'une fonction périodique Moyenne du carré d'une fonction sinusoïdale Moyenne d'un produit

- Représentation réelle
- Vecteur de Fresnel
- Représentation complexe Multiplication

Movennes

Moyenne d'une fonction périodique Moyenne du carré d'une fonction einusoiidala

Vecteur de Fresnel

Représentation complexe

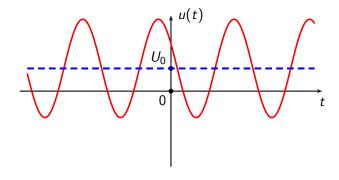
Multiplication

Moyennes

Moyenne d'une fonction périodique Moyenne du carré

d'une fonction sinusoïdale

Moyenne d'un produit



La représentation réelle d'une grandeur sinusoïdale (ici une tension) est de la forme :

$$u(t) = U_0 + U_m \cos(\omega t + \varphi)$$

Vecteur de Fresnel

Représentation complexe

Multiplication

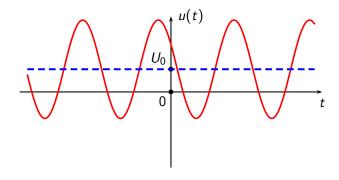
Moyennes

Moyenne d'une fonction périodique

Moyenne du carré

d'une fonction sinusoïdale

Moyenne d'un produit

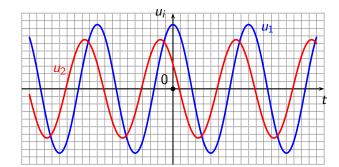


Elle est caractérisée par sa moyenne et ses grandeurs extrêmes :

$$\langle u(t)
angle = rac{1}{T} \int_{t_0}^{t_0+T} u(t) \mathrm{d}t = U_0$$
 $u_{max} = U_0 + U_m \qquad ext{et} \qquad u_{min} = U_0 - U_m$

Deux tensions sinusoïdales synchrones de moyenne nulle déphasées :

$$u_1(t) = U_{m1}\cos\omega t$$
 et $u_2(t) = U_{m2}\cos(\omega t + \varphi)$



Représentation réelle

Vecteur de Fresnel

Représentation complexe

Multiplication

Moyennes

Moyenne d'une fonction périodique

Moyenne du carré d'une fonction sinusoïdale

$$u_2(t)$$
 est *en avance* sur $u_1(t)$ $\varphi > 0$

Représentation complexe

Multiplication

Movennes

Moyenne d'une fonction périodique Moyenne du carré

d'une fonction sinusoïdale Moyenne d'un

produit

L'objectif est d'additionner :

$$u_1(t) = U_{m1}\cos\omega t$$
 et $u_2(t) = U_{m2}\cos(\omega t + \varphi)$

Pour pouvoir écrire :

$$u_1(t) + u_2(t) = u_s(t) = U_m \cos(\omega t + \psi)$$

On détermine U_m et ψ à l'aide des formules :

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$
$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

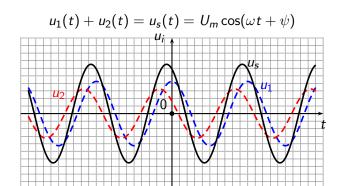
Vecteur de Fresnel

Représentation complexe

Multiplication

Moyennes

Moyenne d'une fonction périodique Moyenne du carré d'une fonction einusoiidala



$$U_m = \sqrt{U_{1m}^2 + U_{2m}^2 + 2U_{m1}U_{m2}\cos\varphi}$$

$$\tan\psi = \frac{U_{m2}\sin\varphi}{U_{m1} + U_{m2}\cos\varphi}$$

Sinusoïdes

JR Seigne MP*, Clemenceau Nantes

Représentation réelle

Vecteur de Fresnel

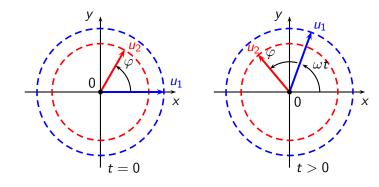
Représentation complexe

Multiplication

Movennes

Moyenne d'une fonction périodique Moyenne du carré d'une fonction

Moyenne d'un produit



Les deux vecteurs figés dans leur position relative par φ tournent dans le plan Oxy à la vitesse de rotation ω . On se contente de les représenter à une date où l'un des vecteurs passe par l'axe horizontal, comme par exemple ici à la date t=0.

 $u_2(t)$ est en avance sur $u_1(t)$ $\varphi > 0$

Vecteur de Fresnel

Représentation complexe

Multiplication

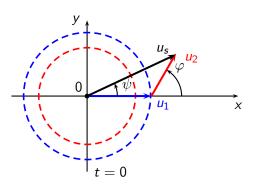
Moyennes Moyenne d'une

fonction périodique Moyenne du carré

d'une fonction einusoiidala

Moyenne d'un produit

Addition



$$U_m = \sqrt{U_{1m}^2 + U_{2m}^2 + 2U_{m1}U_{m2}\cos\varphi}$$

$$\tan\psi = \frac{U_{m2}\sin\varphi}{U_{m1} + U_{m2}\cos\varphi}$$

Représentation complexe

Multiplication

Moyennes

Moyenne d'une fonction périodique Moyenne du carré d'une fonction

Moyenne d'un produit À une tension sinusoïdale de moyenne nulle $u_2(t)=U_{m2}\cos\left(\omega t+\varphi\right)$, on associe la représentation complexe :

$$\underline{u}_{2}(t) = U_{m2} \exp j(\omega t + \varphi) = \underline{U}_{m2} \exp j\omega t$$

où $\underline{U}_{m2}=U_{m2}\exp j\varphi$ est l'amplitude complexe associée à la tension u(t). Il est très pratique d'utiliser cette notation sachant que $\exp j\varphi=\cos\varphi+j\sin\varphi$ et aussi $j^2=-1$.

$$\underline{u}_s(t) = (U_{m1} + U_{m2} \exp j\varphi) \exp j\omega t$$

Représentation complexe

Multiplication

Moyennes

Moyenne d'une fonction périodique Moyenne du carré d'une fonction

sinusoïdale Moyenne d'un produit Lorsque l'on multiplie deux grandeurs sinusoïdales comme $u_1(t)=U_{m1}\cos\omega t$ et $u_2(t)=U_{m2}\cos(\omega t+\varphi)$, on doit utiliser la règle suivante :

$$\cos p \cos q = \frac{1}{2} \left[\cos(p+q) + \cos(p-q) \right]$$

En utilisant cette formule et sans oublier le fait que la fonction cosinus est paire, on arrive à :

$$u_1(t)u_2(t) = \frac{U_{1m}U_{2m}}{2}\left[\cos(2\omega t + \varphi) + \cos\varphi\right]$$

Représentation complexe

Multiplication

Moyennes

Moyenne d'une fonction périodique Moyenne du carré d'une fonction

d'une fonction sinusoïdale Moyenne d'un

produit

En complexes

Lorsque l'on multiplie deux grandeurs sinusoïdales complexes $\underline{u}_1(t) = U_{m_1} \exp j\omega t$ et $\underline{u}_2(t) = U_{m_2} \exp j(\omega t + \varphi)$, on obtient :

$$\underline{u}_1(t)\,\underline{u}_2(t) = U_{m1}U_{m2}\exp j(2\omega t + \varphi)$$

Si l'on tente de revenir en réels :

$$\Re(\underline{u}_1(t)\,\underline{u}_2(t))=U_{m1}U_{m2}\cos(2\omega t+\varphi)$$

à comparer à
$$u_1(t)u_2(t)=\frac{U_{1m}U_{2m}}{2}\left[\cos(2\omega t+\varphi)+\cos\varphi\right].$$

CONCLUSION: ATTENTION À L'UTILISATION
DES COMPLEXES POUR LES MULTIPLICATIONS

Représentation complexe

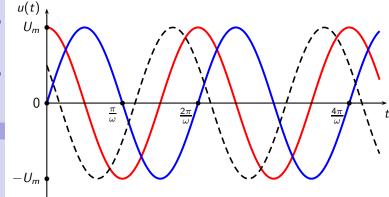
Multiplication

Moyennes

Moyenne d'une fonction périodique

Moyenne du carré d'une fonction

sinusoïdale Moyenne d'un produit On a représenté $u_1(t)=U_m\cos\omega t,\ u_3(t)=U_m\sin\omega t$ de période $T=2\pi/\omega$ ainsi que $u_2(t)=U_m\cos(\omega t+\varphi)$:



Leurs moyennes sont nulles : $\langle \cos \omega t \rangle = \langle \sin \omega t \rangle = 0...$

Représentation complexe

Multiplication

..

Moyennes Moyenne d'une

fonction périodique Moyenne du carré

d'une fonction sinusoïdale

Moyenne d'un produit Moyenne d'une fonction u(t) quelconque entre les dates $t_i=t_0$ et $t_f=t_0+\Delta t$ avec $\Delta t>0$:

$$\langle u(t) \rangle = \overline{u(t)} = \frac{1}{t_f - t_i} \int_{t_i}^{t_f} u(t) dt = \frac{1}{\Delta t} \int_{t_0}^{t_0 + \Delta t} u(t) dt$$

Pour une fonction périodique, sur un grand intervalle de temps $\Delta t = nT + \tau$ avec $n \in \mathbb{N}$ et $\tau < T$ et donc $nT \gg \tau$, le calcul revient à celui effectué sur une période T complété par une modeste contribution liée à τ :

$$\langle u(t) \rangle \simeq \frac{1}{T} \int_{t_0}^{t_0+T} u(t) dt + \frac{1}{nT} \int_0^{\tau} u(t) dt$$

Vecteur de Fresnel

Représentation complexe

Multiplication

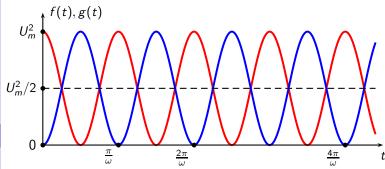
Movennes

Moyenne d'une fonction périodique

Moyenne du carré d'une fonction sinusoïdale

Moyenne d'un produit

On sera souvent amenés à calculer des moyennes de termes comme $f(t) = U_m^2 \cos^2 \omega t$ et $g(t) = U_m^2 \sin^2 \omega t$. f(t) et g(t)sont positifs et compris entre 0 et U_m^2 .



$$\langle \cos^2 \omega t \rangle = \langle \sin^2 \omega t \rangle = \frac{1}{2}$$

Représentation complexe

Multiplication

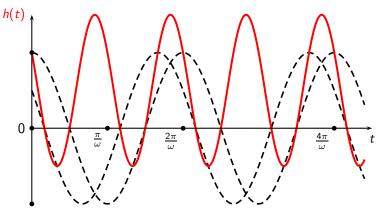
Moyennes

Moyenne d'une fonction périodique Moyenne du carré

d'une fonction sinusoïdale Moyenne d'un

produit

Moyenne du produit $h(t) = U_m^2 \cos(\omega t + \varphi) \cos \omega t$:



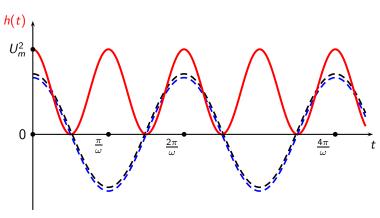
$$\langle h(t)\rangle = \frac{U_m^2}{2}\cos\varphi$$

Représentation complexe

Multiplication

Moyennes

Moyenne d'une fonction périodique Moyenne du carré d'une fonction sinusoïdale



$$\langle h(t) \rangle = \frac{U_m^2}{2}$$

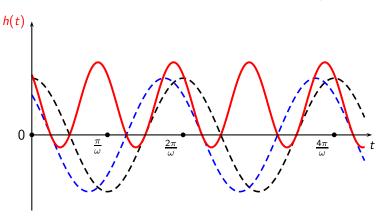
Vecteur de Fresnel

Représentation complexe

Multiplication

Moyennes

Moyenne d'une fonction périodique Moyenne du carré d'une fonction sinusoïdale



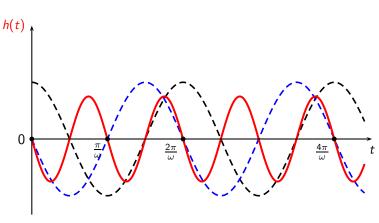
$$\langle h(t) \rangle = \frac{U_n^2}{\sqrt{2}}$$

Représentation complexe

Multiplication

Moyennes

Moyenne d'une fonction périodique Moyenne du carré d'une fonction sinusoïdale



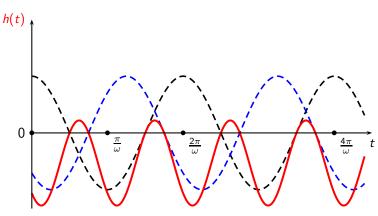
$$\langle h(t) \rangle = 0$$

Représentation complexe

Multiplication

Moyennes

Moyenne d'une fonction périodique Moyenne du carré d'une fonction sinusoïdale



$$\langle h(t) \rangle = -\frac{U_m^2}{\sqrt{2}}$$

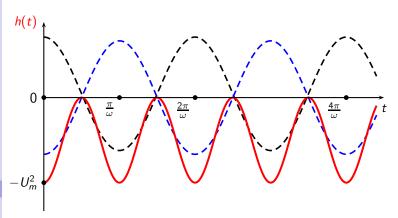
Représentation complexe

Multiplication

Moyennes

Moyenne d'une fonction périodique Moyenne du carré d'une fonction

sinusoïdale Moyenne d'un produit



$$\langle h(t)\rangle = -\frac{U_m^2}{2}$$

Représentation complexe

Multiplication

Movennes

Moyenne d'une fonction périodique Moyenne du carré d'une fonction einusoiidala

Moyenne d'un produit

Moyenne en utilisant les complexes

$$f(t) = F_0 \cos \omega t$$
 et $G(t) = G_0 \cos(\omega t + \varphi)$
 $\langle f(t)g(t) \rangle = \frac{1}{2}F_0G_0 \cos \varphi$

$$\underline{f}(t) = F_0 \exp j\omega t$$
 et $\underline{g}(t) = G_0 \exp j(\omega t + \varphi)$
avec $\underline{g}^*(t) = G_0 \exp -j(\omega t + \varphi)$

$$\langle f(t)g(t) \rangle = rac{1}{2} \Re \left[\underline{f}(t) \underline{g}^*(t) \right]$$

$$\langle f(t)g(t) \rangle = rac{1}{2} \Re \left[F_0 G_0 \exp -j \varphi \right] = rac{1}{2} F_0 G_0 \cos \varphi$$